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Determination of the dynamic critical exponent by quench kinetics simulations
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A two-dimensional lattice-gas model was quenched from a disordered state to the maximum critical
temperature of a 2X 1 superstructure and its ordering kinetics studied by Monte Carlo simulation. The

2
critical growth exponent n, was determined from the time evolution (W¥?),~¢ " of the scalar 2X 1 or-
der parameter W. The relation z =(2—17)/2n, (with static critical exponent n=%) was then applied to

evaluate the (linear) dynamic critical exponent z. With Kawasaki dynamics the exact value z =2 of mod-
el C of critical dynamics (nonconserved order parameter, conserved density) was recovered whereas a
value z =2.1910.04 resulted for model 4 (nonconserved order parameter and density) with Glauber dy-

namics.

PACS number(s): 64.60.Ht, 64.60.My, 64.60.Cn, 75.40.Mg

The dynamic critical exponent z of the two-
dimensional spin-flip Ising model is not known exactly
yet, despite many attempts which have been made in the
past to solve this problem. The dynamic critical ex-
ponent describes the divergence of the relaxation time 7
near the critical point according to 7~ |T —T,| ™", where
T, is the critical temperature and v the static critical ex-
ponent of the correlation length. A variety of different
techniques has been applied to determine z, including,
e.g., time correlation matching with Monte Carlo renor-
malization group (MCRG) methods [1-6], relaxation
measurements on critically equilibrated systems (includ-
ing finite-size scaling) [7-16], recording of ‘“‘damage
spreading” in spin systems subsequent to a localized ini-
tial perturbation [17-19], and high-temperature series
expansions [20-24]. However, the results (which are
compiled, e.g., in Ref. [6]) are not fully consistent with
each other and typically range from slightly below 2.0 to
slightly above 2.2. Recent estimates are z=2.13%0.01
(MCRG calculations [6]), z=2.184+0.03 (large-scale
Monte Carlo simulations on a parallel computer [16]),
and z=2.183+0.005 (high-temperature series expansions
up to 20th order [24]).

In this paper we present results from quench kinetics
simulations of a 2D lattice-gas model which—as an in-
dependent method—allow an estimate for the linear dy-
namic critical exponent z as well. Generally, the method
works as follows: At time ¢ =0 the system is quenched
from a totally disordered state (corresponding to
infinitely high temperature) to a critical point of an or-
dered phase with order parameter ¥ (which was scalar in
this case, see details given below). After a short transient
the average linear size R (¢) of ordered domains is expect-
ed to grow with time according to a power law

R(1)~V (W), ~1" (1)

with a “critical” growth exponent n, ({ ), denotes an en-
semble average at time ¢#). Here the root mean square of
the order parameter ¥ is used as a measure for the aver-
age domain size R (¢). The power law (1) will be valid as
long as time is small compared to the relaxation time .
To be precise, 7 is the linear relaxation time (and z the
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linear dynamic critical exponent), since the equilibrium
values of the order parameter both before and after the
quench (at T=o and T =T,, respectively) are equal
(zero), at least for a system of infinite size. Dynamic scal-
ing assumptions lead to the relation [25-27]

z= 2—7 2)
2n,

between the critical growth exponent n, and the dynamic
critical exponent z, including the static critical exponent
7 which is known exactly for the two-dimensional (2D)
Ising universality class (p=4). Monte Carlo simulation
of domain growth at T =T, therefore allows the deter-
mination of z from the observed critical growth exponent
n.. Using this method Huse [25] derived the estimate
z=2.16x0.03 for the spin-flip Ising model on a 57X 57
square lattice. The method was proposed by Binder and
co-workers [26-30] also as a promising technique for an
experimental determination of z for chemisorbed over-
layers (where the domain growth process can be moni-
tored by the time evolution of diffraction spot intensities,
i.e., the equal-time structure factor). However, to our
knowledge, this has not been done yet.

In our simulation study we considered a lattice gas on
a rectangular lattice with VN XV'N sites, periodic
boundary conditions, and grand canonical model Hamil-
tonian

N
H=—g, 3 cc;—g, 3 cc;—1n>¢,
(i) (0,07, i=1

¢,c;€{0,1}, (3)

where the interaction parameter &, between the occupied
nearest-neighbor (NN) sites i,j in the x direction was ar-
bitrarily chosen to be repulsive (¢, <0) and the NN in-
teraction ¢, in the y direction attractive (¢, >0) with the
ratio €,:¢,=—1:3. The last term in Eq. (3) containing
the chemical potential u is the energy contribution of the
occupied sites. It is absent if the canonical ensemble with
fixed coverage 6=(1/N){3;c;) is used. With only pair-
wise interactions considered the temperature vs coverage
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phase diagram of this simple model is symmetric with
respect to coverage 6=0.5. It exhibits a single ordered
phase with a 2 X1 superstructure corresponding to alter-
nating occupied and empty columns of lattice sites [31,
32]. The transition from the disordered to the 2X 1 phase
is continuous with a scalar order parameter W({c;})
:=(2/N)3,;3;(—1Yc;; (where i,j now denote row and
column indices, respectively). Our computer simulations
were performed for a lattice of N =64X64 sites. For a
chemisorption system this is comparable to typical ter-
race sizes on nominally flat low-index metal surfaces.
For this finite system size the maximum critical tempera-
ture T;"*=T_.(6=0.5)=0.349£0.001 in units of ¢, /kp
was determined in a previous study of equilibrium prop-
erties of the model [31].

It should be pointed out that both the critical growth
exponent n, and the resulting dynamic critical exponent z
may belong to different universality classes of critical dy-
namics, depending on whether the canonical or the grand
canonical ensemble is used. If Glauber dynamics with
“inversion” of the occupation state ¢;; —1—c;; is applied
(corresponding to ordering via adsorption-desorption
processes), then the chemical potential has to be held
constant and both the coverage and the order parameter
are not conserved during the simulation. The dynamics
of the model then corresponds to the spin-flip dynamics
of the Ising model and belongs to the universality class of
“model A4” in the Hohenberg-Halperin classification of
critical dynamics [33]. If, on the other hand, Kawasaki
dynamics (particle-hole exchange between nearest neigh-
bors in the x or y direction) is applied, then the order pa-
rameter remains not conserved but is coupled to a con-
served quantity, the coverage 6. The dynamics then be-
longs to the class of “model C ”, for which z is known to
have the exact value z =2 [33]. (In contrast, the dynam-
ics of the spin-exchange Ising model belongs to the class
of “model B> with conserved order parameter.) So, simu-
lations using Kawasaki dynamics allow an accuracy
check of the quench kinetics method for the determina-
tion of z. The simulational procedures and results using
Kawasaki dynamics are reported below.

Before each quench the lattice was prepared in a com-
pletely disordered state ({(¥?),_,=~0) at coverage
6=0.5. In order to check the sensitivity of the method,
the system was quenched to 7."** as well as to tempera-
tures both slightly below and above this value. For every
final quench temperature 1000 independent Monte Carlo
(MC) simulations up to ¢ =5000 Monte Carlo steps per
site (MCS) have been performed on a CRAY Y-MP
supercomputer to evaluate time-dependent averages
(W?),. We used a special MC algorithm (“hybrid algo-
rithm”) which was developed to speed up superstructure
domain growth simulations by partial vectorization. It
has been demonstrated in extensive tests that our algo-
rithm suppresses vectorization-induced artificial spatial
correlations across the lattice to a negligibly low level.
The results yielded are in excellent agreement with those
from conventional serial algorithms [31,32,34].

For each quench temperature the resulting data (¥?),
were analyzed in terms of a time-dependent effective
growth exponent
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In order to reduce roughening effects associated with nu-
merical differentiation, ng(¢) was determined from the
slope of lines fitted to each group of 25 successive data
points centered at ¢ in a plot of log{¥?), vs logt. The re-
sults are shown in Fig. 1 as a function of time for five
different quench temperatures 7. For T =T[™**=0.349
[Figs. 1(a)—(c)] the following common features can be ob-
served with increasing time: (1) an initial period with n 4
decreasing which lasts longer the higher T is chosen (up
to t=500 MCS at T."®); (2) an almost constant level
(apart from some residual wiggles caused by statistical
fluctuations) which, however, decreases and also persists
longer in time with increasing temperature; (3) finally, a
further continuous reduction of n. which is associated
with a crossover to saturation of (W?) at its equilibrium
value. Obviously the intermediate constant level of n 4
must be interpreted as the growth exponent n(7) in a
generalization of Eq. (1) to T <T, [with n,=n(T**)].
For T=0.3494 [Fig. 1(d)], which is above but still within
the £ 10 range 0.348-0.350 of our estimate of T"**, the
intermediate period with a constant level of n 4 is already
considerably reduced. It has completely disappeared at
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FIG. 1. Effective growth exponent n.4(¢) as a function of
time for different quench temperatures 7 derived from averages
over 1000 independent MC runs with Kawasaki dynamics (sys-
tem size 64X 64): (a) and (b), T < T **; (c) and (d), T=T>*,;
and (e), T>T*. The resulting growth exponents n(T) are
shown as insets.
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T=0.350 [Fig. 1(e)] where n. decreases more or less
continuously over the whole time range. It is obvious
that 77** <0.350, which can be taken as an a posteriori
verification that our previously determined estimate
T**=0.349 is consistent with the findings from growth
kinetics.

For each quench temperature T = T,"®* the growth ex-
ponent n(7T) was evaluated by fitting a power law to up
to 55 points of the original {(W?), data within the inter-
mediate time regime within which n4(¢) is almost con-
stant. The resulting numerical values for n are shown as
inserts in Figs. 1(a)-1(d). At T=0.347~=0.994T%%, the
fit leads to n=0.493+0.010 which is still in excellent
agreement with the prediction n =0.5 from the Lifshitz-
Allen-Cahn theory of curvature-driven domain growth
[35,36]. In a previous study also lower quench tempera-
tures down to 0.67,"** were considered and in all cases
the growth exponent turned out to be very close to
n =0.5 [31,32]. At T=0.348=~0.997T,, n has decreased
to n=0.455+0.010, and for T=0.349=T** the value
n~n,=0.42610.010 results (and almost the same value
0.4271+0.010 for T=0.3494). From Eq. (2) we then find
the estimate z=:z,=2.05%0.05 for “model C’ which
agrees with the exact value zo =2 within the =10 range.
We expect a comparable accuracy in the case where the
method is used with Glauber dynamics, which we discuss
next.

With Glauber dynamics the procedures of simulation
and data reduction were the same as in the case of
Kawasaki dynamics, except that now the chemical poten-
tial was fixed at its “critical” value p=p, = —2 (corre-
sponding to zero magnetic field of the isomorphic super-
antiferromagnetic spin model with 2X1 superstructure).
In contrast to the simulations with Glauber dynamics the
ordering proceeds faster and finite-size effects cannot be
neglected already above t =700 MCS. In Fig. 2 the root-
mean-square order parameter derived from 1300 indepen-
dent MC runs is shown as a function of time at
T3*=0.349 A power law has been fitted in the time in-
terval 40-600 MCS with a resulting critical growth ex-
ponent n, =0.399+0.007. This fit value turned out to be
quite stable (up to changes in the last decimal) with
respect to minor modifications of position and size of the
time interval used for the fit. Using Eq. (2) this leads to
the estimate z =:z ; =2.1910.04 for the dynamic critical
exponent of model 4.

Within the error limits this agrees well with previous
results z=2.18+0.03 from Monte Carlo autocorrelation
time measurements [16] and z=2.16+0.03 from quench
kinetic simulations of the Ising model [25] where aver-
ages over more than 50 000 MC runs for a square lattice
of similar size 57X 57 were used explaining the slightly
smaller error bounds compared to our result. Our esti-
mate for z is remarkably close to the value
z=2.183+0.005 derived from high-temperature series
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FIG. 2. Time evolution of the root-mean-square order pa-
rameter V' (¥?), at T=T™*=0,349 after averaging over 1300
independent MC runs with Glauber dynamics (system size
64X 64). The thick solid line represents the MC data and the
thin solid line the power law with exponent #, fitted in the time
interval 40-600 MCS. Both n, and the resulting value for
z=z 4, are shown as insets.

expansion calculations recently [24], although the error
bars of our result are larger by almost an order of magni-
tude.

To summarize, we have evaluated the dynamic critical
exponent z ;, =2.191+0.04 of model A from quench kinet-
ics simulation with Glauber dynamics at T, of a lattice-
gas model with 2X1 superstructure. Despite the only
moderately large lattice size and number of MC runs
used for averaging, our result agrees remarkably well
with a recent estimate from high-temperature series ex-
pansions. The accuracy of our result could be checked
independently by performing quench kinetics simulations
also with Kawasaki dynamics, leading to the estimate
z¢=2.05%0.05 for model C which is close to the exact
value zo=2. High-precision estimates for z can be ex-
pected if the number of independent MC runs used for
averaging will be increased further by at least two orders
of magnitude. However, our results already demonstrate
that quench kinetics simulation at T, is a promising alter-
native method for the determination of the dynamic criti-
cal exponent z.
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